Оптические характеристики (часть 1 – Производственные характеристики)

Оптические характеристики используются при проектировании и производстве компонента или системы, чтобы определить, насколько хорошо они соответствуют определенным требованиям к производительности.Они полезны по двум причинам: во-первых, они определяют допустимые пределы ключевых параметров, определяющих производительность системы;во-вторых, они определяют количество ресурсов (т. е. времени и стоимости), которые должны быть потрачены на производство.Оптическая система может страдать как от недостаточной, так и от чрезмерной спецификации, что может привести к ненужному расходу ресурсов.Paralight Optics предлагает недорогую оптику, полностью отвечающую вашим требованиям.

Чтобы лучше понять оптические характеристики, важно узнать, что они в основном означают.Ниже приводится краткое описание наиболее распространенных характеристик почти всех оптических элементов.

Технические характеристики производства

Допуск на диаметр

Допуск диаметра круглого оптического компонента обеспечивает приемлемый диапазон значений диаметра.Допуск на диаметр не оказывает никакого влияния на оптические характеристики самой оптики, однако это очень важный механический допуск, который необходимо учитывать, если оптика собирается устанавливаться в держателе любого типа.Например, если диаметр оптической линзы отклоняется от своего номинального значения, возможно, что механическая ось может быть смещена относительно оптической оси в смонтированном узле, что приведет к децентрации.

Таблица 1

Рисунок 1: Децентрация коллимированного света

Эта производственная спецификация может варьироваться в зависимости от навыков и возможностей конкретного производителя.Paralight Optics может производить линзы диаметром от 0,5 мм до 500 мм, допуски могут достигать +/-0,001 мм.

Таблица 1: Производственные допуски по диаметру
Допуски на диаметр Класс качества
+0,00/-0,10 мм Типичный
+0,00/-0,050 мм Точность
+0,000/-0,010 Высокая точность

Допуск по толщине центра

Толщина центра оптического компонента, в основном линз, представляет собой толщину материала компонента, измеренную в центре.Толщина в центре измеряется поперек механической оси линзы, определяемой как ось точно между ее внешними краями.Изменение центральной толщины линзы может повлиять на оптические характеристики, поскольку центральная толщина, наряду с радиусом кривизны, определяет оптическую длину пути лучей, проходящих через линзу.

Таблица 2
таблица-3

Рисунок 2: Диаграммы для CT, ET и FL

Таблица 2: Производственные допуски на толщину в центре
Допуски на толщину центра Класс качества
+/-0,10 мм Типичный
+/-0,050 мм Точность
+/-0,010 мм Высокая точность

Толщина края против толщины центра

Из приведенных выше примеров диаграмм, показывающих толщину в центре, вы, вероятно, заметили, что толщина линзы варьируется от края к центру оптики.Очевидно, это функция радиуса кривизны и провисания.Плосковыпуклые, двояковыпуклые и положительные менисковые линзы имеют большую толщину в центре, чем по краям.Для плосковогнутых, двояковогнутых и отрицательных менисковых линз толщина центра всегда меньше толщины края.Разработчики оптики обычно указывают на своих чертежах толщину как края, так и центра, допуская один из этих размеров, а другой используют в качестве справочного размера.Важно отметить, что без одного из этих размеров невозможно различить окончательную форму линзы.

Рисунок-3-Схемы-для-CE-ET-BEF--EFL-положительный-отрицательный-мениск

Рисунок 3: Диаграммы для CE, ET, BEF и EFL

Разница толщины клина / кромки (ETD)

Клин, иногда называемый ETD или ETV (изменение толщины кромки), представляет собой простую концепцию для понимания с точки зрения конструкции и изготовления линз.По сути, эта спецификация определяет, насколько параллельны две оптические поверхности объектива друг другу.Любое отклонение от параллельности может привести к тому, что проходящий свет отклонится от своего пути, поскольку цель состоит в том, чтобы сфокусировать или отклонить свет контролируемым образом, поэтому клин вносит нежелательное отклонение в путь света.Клин может быть определен с точки зрения углового отклонения (ошибки центрирования) между двумя передающими поверхностями или физического допуска на изменение толщины края, что представляет собой несоосность между механической и оптической осями линзы.

Рисунок-4-Ошибка центрирования

Рисунок 4: Ошибка центрирования

Стрелец (Сагитта)

Радиус кривизны напрямую связан со сагиттой, которую в оптической промышленности чаще называют прогибом.С точки зрения геометрии, стрела представляет собой расстояние от точного центра дуги до центра ее основания.В оптике прогиб применяется либо к выпуклой, либо к вогнутой кривизне и представляет собой физическое расстояние между точкой вершины (самой высокой или самой низкой точкой) вдоль кривой и центральной точкой линии, проведенной перпендикулярно кривой от одного края оптики до конца. другой.На рисунке ниже представлено визуальное изображение провисания.

Рисунок-5-Диаграммы провисания

Рисунок 5: Диаграммы провисания

Прогиб важен, потому что он обеспечивает расположение центра радиуса кривизны, что позволяет производителям правильно расположить радиус на оптике, а также установить толщину центра и края оптики.Зная радиус кривизны, а также диаметр оптики, прогиб можно рассчитать по следующей формуле.

новости-1-12

Где:
R = радиус кривизны
д = диаметр

Радиус кривизны

Важнейшим аспектом линзы является радиус кривизны, это основной и функциональный параметр сферических оптических поверхностей, требующий контроля качества при изготовлении.Радиус кривизны определяется как расстояние между вершиной оптического компонента и центром кривизны.Он может быть положительным, нулевым или отрицательным в зависимости от того, является ли поверхность выпуклой, плоской или вогнутой соответственно.

Знание величины радиуса кривизны и толщины центра позволяет определить длину оптического пути лучей, проходящих через линзу или зеркало, но также играет большую роль в определении оптической силы поверхности, т. е. насколько сильно оптическая система сходится или расходится свет.Разработчики оптики различают длинные и короткие фокусные расстояния, описывая величину оптической силы своих линз.Говорят, что короткие фокусные расстояния, те, которые преломляют свет быстрее и, следовательно, достигают фокуса на более коротком расстоянии от центра линзы, обладают большей оптической силой, а те, которые фокусируют свет медленнее, описываются как имеющие меньшую оптическую силу.Радиус кривизны определяет фокусное расстояние линзы, простой способ расчета фокусного расстояния для тонких линз дает приближение тонкой линзы к формуле производителя линз.Обратите внимание, что эта формула действительна только для линз, толщина которых мала по сравнению с расчетным фокусным расстоянием.

новости-1-11

Где:
f = фокусное расстояние
n = показатель преломления материала линзы
r1 = радиус кривизны поверхности, ближайшей к падающему свету
r2 = радиус кривизны поверхности, наиболее удаленной от падающего света.

Поэтому, чтобы контролировать любое изменение фокусного расстояния, оптикам необходимо определить допуск на радиус.Первый метод заключается в применении простого механического допуска, например, радиус может быть определен как 100 +/- 0,1 мм.В таком случае радиус может варьироваться от 99,9 мм до 100,1 мм.Второй метод заключается в применении допуска радиуса в процентах.Используя тот же радиус 100 мм, оптик может указать, что кривизна не может варьироваться более чем на 0,5%, что означает, что радиус должен находиться в диапазоне от 99,5 мм до 100,5 мм.Третий метод заключается в определении допуска на фокусное расстояние, чаще всего в процентах.Например, объектив с фокусным расстоянием 500 мм может иметь допуск +/- 1%, что соответствует диапазону от 495 мм до 505 мм.Включение этих фокусных расстояний в уравнение тонкой линзы позволяет производителям получить механический допуск на радиус кривизны.

Рисунок-6-Допуск на радиус-в-центре кривизны

Рисунок 6: Допуск радиуса в центре кривизны

Таблица 3: Производственные допуски на радиус кривизны
Допуски радиуса кривизны Класс качества
+/-0,5 мм Типичный
+/-0,1% Точность
+/-0,01% Высокая точность

На практике производители оптики используют несколько различных типов инструментов для определения радиуса кривизны линзы.Первый представляет собой кольцо сферометра, прикрепленное к измерительному прибору.Сравнивая разницу в кривизне между заданным «кольцом» и радиусом кривизны оптики, производители могут определить, необходима ли дальнейшая коррекция для достижения соответствующего радиуса.На рынке также имеется ряд цифровых сферометров для повышения точности.Другим высокоточным методом является автоматический контактный профилометр, в котором используется датчик для физического измерения контура линзы.Наконец, бесконтактный метод интерферометрии можно использовать для создания интерференционной картины, позволяющей количественно определить физическое расстояние между сферической поверхностью и соответствующим центром кривизны.

Центрирование

Центрирование также известно как центрирование или децентрирование.Как следует из названия, центрирование определяет точность определения радиуса кривизны.Идеально центрированный радиус точно совместит вершину (центр) его кривизны с внешним диаметром подложки.Например, плосковыпуклая линза диаметром 20 мм будет иметь идеально центрированный радиус, если вершина будет линейно расположена ровно в 10 мм от любой точки по внешнему диаметру.Из этого следует, что производители оптики должны учитывать оси X и Y при управлении центрированием, как показано ниже.

Рисунок-7-Диаграмма децентрации

Рисунок 7: Схема децентрации

Величина децентрации в линзе — это физическое смещение механической оси относительно оптической оси.Механическая ось линзы — это просто геометрическая ось линзы, определяемая ее внешним цилиндром.Оптическая ось линзы определяется оптическими поверхностями и представляет собой линию, соединяющую центры кривизны поверхностей.

Рисунок-8-Схема децентрации осей

Рисунок 8: Схема децентрации

Таблица 4: Производственные допуски для центрирования
Центрирование Класс качества
+/-5 угловых минут Типичный
+/-3 угловых минуты Точность
+/-30 угловых секунд Высокая точность

Параллелизм

Параллелизм описывает, насколько параллельны две поверхности по отношению друг к другу.Это полезно при определении таких компонентов, как окна и поляризаторы, где параллельные поверхности идеальны для производительности системы, поскольку они минимизируют искажения, которые в противном случае могут ухудшить качество изображения или света.Типичные допуски варьируются от 5 угловых минут до нескольких угловых секунд следующим образом:

Таблица 5: Производственные допуски для параллелизма
Параллелизм Допуски Класс качества
+/-5 угловых минут Типичный
+/-3 угловых минуты Точность
+/-30 угловых секунд Высокая точность

Угловой допуск

В таких компонентах, как призмы и светоделители, углы между поверхностями имеют решающее значение для работы оптики.Этот допуск на угол обычно измеряется с помощью узла автоколлиматора, система источника света которого излучает коллимированный свет.Автоколлиматор вращается вокруг поверхности оптики до тех пор, пока результирующее отражение Френеля обратно в нее не создаст пятно на верхней части контролируемой поверхности.Это подтверждает, что коллимированный пучок падает на поверхность точно под прямым углом.Затем вся сборка автоколлиматора поворачивается вокруг оптики к следующей оптической поверхности, и та же процедура повторяется.На рис. 3 показана типичная установка автоколлиматора для измерения допуска угла.Разница в углах между двумя измеренными положениями используется для расчета допуска между двумя оптическими поверхностями.Угловой допуск может поддерживаться в пределах от нескольких угловых минут вплоть до нескольких угловых секунд.

Figure-9-Autocollimator-Setup-Measuring-Angle-Tolerance

Рис. 9. Настройка автоколлиматора. Измерение отклонения угла.

Скос

Углы подложки могут быть очень хрупкими, поэтому важно защитить их при обращении с оптическим компонентом или его монтаже.Наиболее распространенным способом защиты этих углов является скос краев.Скосы служат в качестве защитных фасок и предотвращают появление сколов на кромках.В следующей таблице 5 приведены характеристики фаски для различных диаметров.

Таблица 6: Производственные ограничения для максимальной ширины торца скоса
Диаметр Максимальная ширина торца скоса
3,00 - 5,00 мм 0,25 мм
25,41 мм - 50,00 мм 0,3 мм
50,01 мм - 75,00 мм 0,4 мм

Очистить диафрагму

Чистая апертура определяет, какая часть объектива должна соответствовать всем описанным выше спецификациям.Он определяется как диаметр или размер оптического компонента либо механически, либо в процентах, который должен соответствовать спецификациям, за исключением этого, производители не гарантируют, что оптика будет соответствовать заявленным спецификациям.Например, линза может иметь диаметр 100 мм и чистую апертуру, указанную как 95 мм или 95%.Любой метод приемлем, но важно помнить, как правило, чем больше чистая апертура, тем сложнее изготовить оптику, поскольку требуемые рабочие характеристики все ближе и ближе приближаются к физическому краю оптики.

Из-за производственных ограничений практически невозможно изготовить чистую апертуру, точно равную диаметру или длине по ширине оптики.

новости-1-10

Рисунок 10: График, показывающий прозрачную апертуру и диаметр объектива

Таблица 7: Допуски на прозрачную апертуру
Диаметр Очистить диафрагму
3,00 мм – 10,00 мм 90% диаметра
10,01 мм - 50,00 мм Диаметр – 1 мм
≥ 50,01 мм Диаметр – 1,5 мм

Для получения более подробных спецификаций, пожалуйста, просмотрите наш каталог оптики или рекомендуемых продуктов.


Время публикации: 20 апреля 2023 г.